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In this paper, we establish optimal conditions for maximal energy transfer efficiency using solutions for
multilevel systems and interpret these analytical solutions with more intuitive kinetic networks resulting
from a systematic mapping procedure. The mapping procedure defines an effective hopping rate as the
leading order picture and nonlocal kinetic couplings as the quantum correction, hence leading to a rigorous
separation of thermal hopping and coherent transfer useful for visualizing pathway connectivity and
interference in quantum networks. As a result of these calculations, the dissipative effects of the
surrounding environments can be optimized to yield the maximal efficiency, and modulation of the
efficiency can be achieved using the cumulative quantum phase along any closed loops. The optimal
coupling of the system and its environments is interpreted with the generic mechanisms: (i) balancing
localized trapping and delocalized coherence, (ii) reducing the effective detuning via homogeneous line-
broadening, (iii) suppressing the destructive interference in nonlinear network configurations, and (iv)
controlling phase modulation in closed loop configurations. Though these results are obtained for simple
model systems, the physics thus derived provides insights into the working of light harvesting systems,
and the approaches thus developed apply to large-scale computation.

I. Introduction

In photosynthetic systems, excitation energy is transferred
between pigments of the antenna to reach the reaction centers
with remarkable efficiency.1-3 Recent experiments reveal that
photosynthetic systems and their surrounding protein environ-
ments interact coherently to optimize transfer pathways and
maximize efficiency.4,5 The high efficiency in natural systems
has inspired scientists to design artificial systems for efficient
conversion of solar energy into useful energy forms.6 These
experimental results have motivated two theoretical questions:
how to optimize the efficiency of energy transfer systems in
dissipative environments and how to understand the optimization
conditions in terms of classical kinetics. In the following, we
elaborate on these two questions and outline the approaches to
address them, then review related papers published recently,

and finally establish the connection between quantum control
theory and optimal design theory.

A. Motivations and Outline. In an energy transfer process
characterized by quantum coherence, trapping, and dissipation,7-14

how can one optimize the interplay of different mechanisms to
achieve the best quantum efficiency under certain physical
constraints? Naively, one would think that a one-dimensional
linear configuration with no dissipation would be ideal. How-
ever, such a system is highly coherent and delocalized in space
and does not trap easily into the target state, thus resulting in
low quantum yield for energy conversion.15-17 In section III,
we discuss the optimization conditions of coherence, trapping,
and dissipation for maximal quantum efficiency of energy
transfer systems in linear configurations. For nonlinear con-
figurations with spatial arrangements, quantum effects become
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more dramatic due to the interference between different
pathways, giving rise to the phase modulation of the efficiency.18

The added complexity of reversible transitions, dephasing, and
detuning makes the prediction of phase modulation more subtle
in photosynthetic pigments, dendrimers, molecular wires, poly-
meric liquid crystals, and other quantum transport systems with
nonlinear spatial configurations. Phase modulation plays an
interesting role in laser experiments, where relative phases
between different matrix elements and between different excita-
tion pathways can be introduced and controlled.19-22 In section
V we study the phase modulation in multisite systems and
extend the conclusions to general scenarios of nonlinear
molecular arrangements.

Much of our discussion is based on exact analytical solutions
for model systems. Though the same physics is expected, exact
solutions for large photosynthetic systems and other realistic
systems become impractical if not impossible. How can we
develop an intuitive understanding of the underlying physics
in a complex system and systematically predict quantum effects?
Often, energy transfer in photosynthetic systems is pictured as
a stepwise hopping process, where adjacent sites are linked with
a hopping rate. In section IV, we map an energy transfer network
to a kinetic network as the leading order picture and use it as
the basis to formulate a systematic expansion of the full quantum
mechanical treatment. The expansion assigns nonlocal links
between states, which is a manifestation of quantum coherence
and delocalization. The mapping to kinetic networks takes
advantage of perspectives such as modularity, pathway decom-
position, and flux balance, provides a kinetic picture of quantum
dynamic effects including coherence, delocalization, and inter-
ference, and introduces a starting point for further discussions
on robustness of energy transfer networks.

The rest of paper is organized as follows: In section II, we
define the model system, energy transfer efficiency (i.e.,
quantum yield), and its relationship to the average trapping time
in the high-yield limit. In section III, we establish the optimiza-
tion conditions for maximal efficiency or minimal trapping time
in one-dimensional multisite chain systems. In section V, we
formulate the systematic procedure to map energy transfer
networks to kinetic networks with both local and nonlocal links.
In section V, we predict the phase modulation of efficiency for
energy transfer systems with topological loop(s) using analytical
solutions, numerical calculations, and the kinetic mapping
approach. In section VI, we conclude the paper by summarizing
our findings.

B. Survey of Related Studies. The exactly solvable models
studied here not only quantify the key results in the literature
but also suggest new observations that have not been predicted.
Here, we discuss the implications of our results in the context
of recent publications.

1. Energy transport in molecular crystals and aggregates has
been extensively reviewed, usually focusing on the dif-
fusive limit of extended systems.15 Interestingly, the
exciton diffusion constant on an infinite lattice is shown
to reach a maximal value at an optimal dephasing rate, a
result relevant for quantum transport in nanoscale systems.
However, in the presence of the trapping at the charge
transfer state, energy transfer is biased toward the trap state
and, different from random walk in an infinite lattice,
exciton transfer and trapping may not necessarily occur
in the diffusive limit.

2. Early calculations of energy transfer in molecular ag-
gregates are based on classical kinetics with rates estimated
by Forster theory and Dexter theory. This approach is

equivalent to the first order of the kinetic mapping
procedure introduced in section IV and is applicable to
energy transfer systems without strong coherent effects.
In a series of studies, Sener and Schulten demonstrated
the robustness of photosynthetic networks by examining
variations in energy transfer efficiency in response to
changes in rate constants, temperatures, and connectivity.11,12

Knoester and co-workers discussed dendrimes and cylin-
drical aggregates and explored the relationship between
network connectivity and trapping time within the frame-
work of classical kinetics.23,24

3. Quantum mechanical effects in finite exciton systems can
be explicitly included by using the density matrix and
quantum master equations. The quantum treatment is
essential for calculating spectral properties for molecular
aggregates and has also been extended to transport
properties. For example, Reineker et al. calculated optical
absorption and energy transfer in dendrimers, and showed

Jianshu Cao is an associate professor of chemistry at MIT. He received a
Ph.D. in physics from Columbia University in 1993, under the direction of
Bruce Berne. After postdoctoral research with Greg Voth at University of
Pennsylvania and with the late Kent Wilson at UCSD, he jointed the MIT
faculty in 1998. His research interests include quantum dynamics of
molecular systems, stochastic analysis of single molecule measurements,
self-assembly of colloids and polymers, and mechanical properties of cells
and bio-molecules.

Bob Silbey received his Ph.D. at the University of Chicago working with
Professor Stuart Rice, after which he worked as an AFOSR postdoctoral
fellow with Professor Joseph Hirschfelder at the University of Wisconsin.
He has spent his entire academic career as a faculty member at MIT, except
for visiting professorships in The Netherlands, France, and Germany. Silbey
has done research on energy and electron transfer in condensed phases,
energy transfer from excited molecules to surfaces, electronic states and
optical properties of conjugated polymers, quantum dynamics of tunneling
systems interacting with their environment, the coupling of vibrational and
electronic degrees of freedom in molecules and solids, and the quantum
dynamics of highly excited molecules. He has worked very closely with
experimentalists in all his research.

13826 J. Phys. Chem. A, Vol. 113, No. 50, 2009 Cao and Silbey



the time-dependence of energy transport and the domi-
nance of the rim states in the absorption spectra.25,26 Other
quantum calculations include impurity quenching of Fren-
kel excitons in linear chains27 and nonmonotonic depen-
dence of energy harvesting efficiency in biased exciton
chains.28

4. Inspired by time-resolved spectroscopy measurements,
several groups explored the optimization conditions of
exciton transfer and trapping. Of particular relevance
are the numerical solutions by Gaab and Bardeen for
N-site homogeneous chain systems in different topo-
logical arrangements. They predicted the optimal com-
bination of trapping and dephasing for the minimal
trapping time.29 Recent studies by Plenio and co-workers
on linear chain models and on globally connected
network models show explicitly the dependence of
transfer efficiency on energy mismatch (i.e., detuning)
and dephasing rate.30,31 Optimal conditions have also
been identified for a local site model of the FMO
complex.32-34 A recent quantum calculation of LH2
demonstrates the role of quantum coherence in disor-
dered biological systems and the importance of the
initial preparation of quantum states.35

Our solutions of multilevel systems not only quantify the
results reported in the above studies but also make new
predictions, including the lack of environment-assistance in
linear-chain systems and the phase-dependence in a close
network. The analysis of the two-level and three-level models
allows us to understand and classify the optimal conditions of
complicated model systems in a simple and unified frame-
work.

C. Quantum Control and Optimal Design. The optimiza-
tion analysis reported here is related to another important
development in physical chemistry, i.e., the application of
optimal control theory to coherent excitation of chemical
systems. Stimulated by advances of ultrafast laser technology,
quantum control theory addresses the question of how to
design an optimal laser field to drive the dynamics of a
quantum system for selective chemical bond formation and
breaking.36-40

1. For photosynthetic systems, the inputs are incoherent
photons from sunlight and are a given constraint under
specific ambient conditions. Instead of optimizing laser
fields, we optimize the design of photosynthetic systems
for energy transfer and subsequent conversion to chemical
energy. Specifically, coherent control theory searches for
the best laser field given the system Hamiltonian,41

whereas optimal design theory searches for the best system
Hamiltonian given the input photons. Though different in
their formulations, both theories as illustrated in Figure 1
aim to optimize the efficiency of photons to achieve an
objective.

2. In the Gaussian bath representation, the stochastic force
exerted by the environment f(t) is analogous to the laser

field E(t), which is harmonic in second quantization. Thus,
the search for the optimal dephasing mechanism is similar
to the search for the driving force to guide the system
along a specific trajectory, although the environment often
consists of a continuous distribution of modes and the
electric field can be a single mode. In a sense, optimization
of exciton trapping can be regarded as an application of
optimal control theory to a new class of problems related to
the design of molecular structures. Broadly speaking, optimal
design theory not only explores the structure-function
relation for the best design of efficient artificial photosynthetic
systems but also helps to explore the implications of evolution
and environmental selection in natural photosynthetic sys-
tems.42

3. In addition, the energy transfer and trapping problem also
poses an interesting quantum coherent control problem.
In the multiple site solutions, the transfer efficiency
depends on the initial population or more generally on
the initial density matrix; thus, one can design the laser
field to prepare the optimal initial state of the exciton
system to achieve the best transfer efficiency. In fact, a
recent paper demonstrates the crucial role of the quantum
superposition of the initial state in the energy transfer
process of the LH1-RC core unit and suggests a case study
of optimal excitation in light-harvesting systems.35

II. Quantum Efficiency and Average Trapping Time

To formulate the problem, we begin with the equation of
motion for the exciton system depicted in Figure 2,

where F is the density matrix. In eq 1, Lsys is the evolution
operator of the isolated exciton system. An isolated quantum
system is completely coherent and exhibits oscillatory behavior
that does not yield net energy flux. The mechanisms responsible
for irreversible energy flow include the coupling to the solvent
environment, the finite exciton lifetime, and the trapping at the
charge separation state for subsequent conversion to chemical
energy. Ldissip represents the dephasing and population effects
within the exciton manifold. Ldecay represents the decay of the
exciton to the ground state to produce heat and can be expressed
as [Ldecay]nm ) ([kd]n + [kd]m)/2 with kd the decay rate. Ltrap

represents the trapping of the exciton at the charge separation
state and can be expressed as [Ltrap]nm ) ([kt]n + [kt]m)/2 with kt

the trapping rate. The system operator Lsys and the dissipation
operator Ldissip depend on the details of the system-bath
Hamiltonian. Specifically, we write LsysF ) i[H, F]/p, where
[H]nm ) (1 - δnm)Jnm + δnmεn with Jnm the next neighbor

Figure 1. Schematic illustration of (a) quantum control theory and
(b) optimal design theory.

Figure 2. Schematic illustration of the exciton system coupled to the
dissipative environment and subject to decay to the ground state and
trapping at the charge transfer state.

Ḟ(t) ) -LF(t) ) -[Lsys + Ldissip + Ldecay + Ltrap]F(t)
(1)
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coupling constant and ε the site energy. When the coupling
matrix element Jnm carries a phase, the complex coupling matrix
must be Hermitian, Jnm ) Jmn* . As mentioned earlier,19-21 in
optical experiments, the relative phase between different
coupling matrix elements associated with distinct excitation
pathways can be controlled by coherent laser fields. For the
convenience of analysis, the coupling to the environment is
described by the standard Bloch-Redfield equation, [Ldissip]nm

) (1 - δnm)Γnm* , with Γ* the pure dephasing rate. More
complicated forms of quantum master equations43-45 can be
incorporated in the future but will not be discussed here. In
this paper, we consider only the dephasing and ignore population
relaxation between different states within the exciton manifold.

We first comment on the model system defined in Figure 2
and in eq 1. (i) The full exciton-bath Hamiltonian includes
both the dynamic relaxation to the ground state and the dynamic
localization (i.e., trapping) at the charge transfer state. In our
model, both mechanisms are represented by kinetic rate
constants, kd and kt, respectively. This simplification can be
justified by time-scale separation and can be removed in a full-
scale quantum dynamic simulation. (ii) Often, dynamic noise
appears in both the diagonal and off-diagonal matrix elements
of the system Hamiltonian, leading to two different relaxation
channels. It is believed that the diagonal disorder is dominant
in photosynthetic systems and dephasing is the primary relax-
ation mechanism. (iii) The master equation formulation depends
on the choice of the basis set, to which the Markovian approach
is applied. The choice of the basis set depends on the strength
of system-bath coupling and on the measurement time scale.
Except for systems of high symmetry, such as LH2, energy
transfer is usually described in the local basis set, classically as
hopping or quantum mechanically using quantum master
equations. On the basis of the physical considerations, we adopt
the local basis set and assume the high-temperature limit.
Combining these approximations, we arrive at eq 1, where the
system dynamics with the approximation in eq 3 (without
explicit consideration of exciton decay) is the same as the
Haken-Strobl model.

According to eq 1, Ldecay and Ltrap represent two possible
channels for irreversible exciton energy loss, one ineffective
energy transfer, and the other effective. Then the efficiency of
energy transfer is gauged by the quantum trapping yield, q,
defined as the trapping probability46

Here, τn is the mean residence time defined as the integral over
the population, i.e., τn ) ∫0

∞Fn(t) dt, and the population Fn )
Fn,n is the diagonal element of the density matrix. The
denominator in eq 2 is the total depletion probability, which
for convenience is normalized to unity. It then follows that (1
- q) represents the probability of exciton energy dissipation to
heat during transfer processes and can be minimized by reducing
the residence time the system spends on the transfer pathway.
Without loss of generality, we consider constant exciton decay
rate kd and trapping localized at the terminal state (charge
transfer state) kt. When the quantum yield is close to unity, the
trapping rate is much larger than decay rate, i.e., kd/kt , 1, so
that we can ignore the kd dependence in the mean residence
time, τ(kd) ≈ τ(0), and thus Σktnτn(kd) ) 1. Then, the quantum
yield can be approximated as

where 〈t〉 is the mean first passage time to the trap state without
the presence of the constant decay, i.e., the average trapping
time, and is expressed in terms of the mean residence time as
〈t〉 ) Σnτn and we assume kd is the same for all sites. Since
only the average trapping time 〈t〉 is needed in eq 3, we invoke
the stationary solution to eq 1, L τ ) F(0) or τ ) L -1F(0), such
that the average trapping time is given by 〈t〉 ) Σnτn )
ΣnmLnm

-1Fm(0). In this paper, we set the initial distribution F(0)
to be localized at the donor state, Fn(0) ) δn,1 and Fnm ) 0, and
set the trapping rate to kt,n ) ktδn,N with N denoting the terminal
state. Equation 3 allows us to estimate the parameter range
where the transfer efficiency remains approximately constant.34

Quantum yield and trapping time have been extensively
studied in the context of single molecule photon statistics.46 In
fact, single molecule spectroscopic experiments have been
carried out on photosynthetic systems to demonstrate the broad
distribution in their photophysical properties.3,47 With the single
molecule technique, it is now possible to measure not only the
mean first passage time but also its distribution. The calculation
of such distributions and their physical implications will be a
subject of interest for further studies.

III. Linear Configuration: Optimal Environments

Recent experiments suggest that photosynthetic systems and
surrounding protein environments interact coherently to achieve
the most efficient exciton energy transfer.4,5 Motivated by the
experimental findings, we derive analytical solutions for the two-
site, three-site, and N-site chain systems and identify optimal
conditions of dissipative environments for minimal trapping
time. These model studies can be extended to analyze exciton
energy transfer in photosynthetic systems and to characterize
the optimization conditions for maximal quantum yield. The
simple analytical solutions derived here may not be available
for realistic systems, but the basic physics will remain the
same.34

A. Two-Site System. As the first example, we consider a
two-site system, or equivalently, the standard quantum two-
level system (TLS). For this simple problem, the average
trapping time can be easily calculated to give

where J ) J12 is the off-diagonal coupling constant, ∆ ) ε2 -
ε1 is the detuning, and Γ ) Γ* + kt/2 is the phase relaxation
rate for the off-diagonal matrix element. Equation 4 has appeared
in standard references and more recently in the context of single
molecule spectroscopy. Examination of eq 4 suggests the
existence of the minimal trapping time, i.e., maximal quantum
yield, for a given set of J and ∆:

• With a fixed pure dephasing rate, there is an optimal
trapping rate as a function of Γ* in the range of 2(21/2)J <
kt < 2(2J2 + ∆2)1/2. The upper limit is obtained by setting
Γ* ) 0 and the lower limit is obtained by taking larger
value of Γ*.

• With a fixed trapping rate, if kt < 2∆, the optimal dephasing
rate is Γ* ) ∆ - kt/2 and the minimal trapping time is 〈t〉
) 2/kt + ∆/J2. If kt > 2∆, the optimal dephasing rate is Γ*

q )
∑nkt,nτn

∑nkt,nτn + ∑nkd,nτn
(2)

q ≈ 1
1 + ∑nkd,nτn(kd ) 0)

) 1
1 + kd〈t〉

(3)

〈t〉 ) 2
kt

+ 1

2J2

Γ2 + ∆2

Γ
(4)
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) 0 and the minimal trapping time is 〈t〉 ) (2J2 + ∆2)/
(ktJ2) + kt/(4J2).

• The general optimal condition is Γ* ) 0 and kt ) 2(2J2 +
∆2)1/2. The minimal trapping time is 〈t〉 ) (2J2 + ∆2)1/2/
(2J2).

To confirm the optimal conditions derived above, we plot the
average trapping time as a function of trapping rate kt and
dephasing rate Γ* in Figure 4. For the on-resonant case (∆ )
0), there is always a nonzero value for the optimal trapping
rate but a zero value for the optimal dephasing rate. For the
off-resonant case (∆ ) 3J), with a given trapping rate kt, the
optimal dephasing rate is nonzero for kt < 2∆, and zero for kt >
2∆.

These optimal conditions can be understood with simple
physical arguments. For example, while fast trapping at state 2
obviously enhances energy transfer, the fast population relax-
ation at state 2 also destroys the phase coherence between states
1 and 2 and therefore reduces the effective population transfer
rate between the two states, i.e., k1 in eq 10. Hence, there exists
an optimal trapping rate that minimizes the average energy
transfer time. Also, in the presence of large energy difference
∆ and slow trapping rate (kt < 2∆), efficient energy transfer is
achieved when the broadened line width due to dephasing
overlaps with the detuning, thus suggesting an optimal pure
dephasing rate.

Before turning to the next example, we explicitly evaluate
the quantum yield in eq 2 and confirm the slow decay
approximation adopted in eq 3. We can use the standard solution
to the two-site system with the depletion rate k1 ) kd and k2 )
kd + kt and the dephasing rate Γ ) Γ* + kt/2 + kd. Then, the
quantum yield in eq 2 reads

where the second line is rearranged for easy comparison with
eq 4. Evidently, in the limit of kd/kt , 1, the kd dependence in
Γ and the last term in the denominator can be ignored, such
that we recover the simpler expression in eq 3. As expected,
the leading order correction in eq 5 is on the order of kd/kt. For
the remaining part of the paper, we will focus on the calculation
of the average trapping time and assume that quantum yield is
given by eq 3 in the limit of small decay rate or high quantum
yield.

B. Three-Site System in the Linear Configuration. Our
second example of energy transfer along a linear chain is the
three-site system, with a donor, an acceptor, and a bridge state,
as shown in Figure 3. We consider the symmetric case where
ε1 ) ε3. With the approach outlined above, we obtain

Figure 3. Schematic representations of the two-site system, three-site
system, and N-site system, with corresponding kinetic schemes in the
leading order.

Figure 4. Average trapping time as a function of trapping rate kt and dephasing rate Γ* for the two-level system (a) with |J| ) 1 and ∆ ) 0 (the
left contour plot) and (b) with |J| ) 1 and ∆ ) 3 (the right contour plot). The solid circle represents the global minimal.

q ) ktτ2(kd) )
kt

k2

2J2

2J2(1 +
k1

k2
) + k1(Γ + ∆2

Γ )
)

kt

kt + 2kd +
kd

2J2
(kd + kt)(Γ + ∆2

Γ )
≈

1
1 + kd〈t〉

+ O(kd
2〈t〉
kt

)
(5)
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where ∆12 ) -∆23 ) ∆, ∆31 ) 0, Γ12 ) Γ12* , Γ23 ) Γ23* + kt/2,
Γ31 ) Γ31* + kt/2, and Det ) Γ12Γ23 + (|J23|2Γ23 + |J12|2Γ12)/Γ31.
Under the special condition of identical coupling constants J )
J12 ) J23 and identical dephasing rates Γ* ) Γ12* ) Γ23* ) Γ31* ,
eq 6 reduces to

Careful examination of eq 7 establishes the optimal conditions
for the near-resonant case as Γ* ) 0 and kt ) [3(∆2 + 2J2)]1/2

and the optimal trapping time as 〈t〉 ) 1/(J2 + ∆2/2)1/2. We will
see in section IV that a three-site system can be mapped to a
system of three kinetic states so that the three terms in eq 6
follow the general functional form for a kinetic chain reaction
(see eq 15 below).

To examine the optimal conditions, we plot the average
trapping time as a function of trapping rate kt and dephasing
rate Γ* in Figure 5. Similar to the two-level system, the near-
resonant case (∆ ) 0.1J), the optimal trapping time is obtained
without dephasing but with a finite trapping rate. Different from
the two-level system, for the far-off resonant case (∆ ) 3J),
the optimal trapping time is obtained with nonvanishing
dephasing rate and trapping rate.

C. N-Site Chain System. Our last example is an N-site
system in the linear configuration. The general solution of the
N-site linear chain system is difficult to obtain if not impossible.
Instead, we adopt the more intuitive approach of mapping a
quantum exciton system to a classical kinetic network. The
mapping is explicitly formulated in section IV, where the
classical rate expressions (see eqs 14 and 15) give

Consider the special case of constant detuning ∆, constant
coupling constant J, and constant dephasing rate Γ*. Then, eq
8 reduces to

which leads to the following observations:
• With a fixed trapping rate, the optimal dephasing rate is

Γ* ) (2/N)1/2∆ - kt/2, if kt < 2(2/N)1/2∆ and is zero, Γ* )
0, if kt > 2(2/N)1/2∆.

• The general optimal condition is Γ* ) 0 and kt ) 2[∆2 +
NJ2/(N - 1)]1/2, and the minimal trapping time is 〈t〉 ) (N
- 1)[∆2 + NJ2/(N - 1)]1/2/J2, for a given set of J and ∆.

Evidently, the optimal conditions discussed for the two-site
system is a special case of the above observations with N ) 2.
Also note that for a long chain the optimal trapping time
increases linearly with N, 〈t〉 ) N(∆2 + J2)1/2/J2 ∝ N, confirming
the linear scaling of extended dissipative exciton systems.
Numerical calculations of the N-site Bloch equation indicates
the accuracy of the approximate classical solution in eq 8
improves with the number of the sites, thus suggesting the
validity of mapping of an extended exciton system to a kinetic
network.

IV. Mapping to Kinetic Networks

The energy transfer units in photosynthetic systems exhibit
rich topological connectivity that facilitates fast and robust
energy harvesting. The topological connectivity in such complex
molecular architectures is often analyzed using the language of
kinetic networks, as for chemical networks or electric circuits.
However, excitons are quantum mechanical states that cannot
be readily represented by classical kinetic states. In fact, for
isolated exciton systems described by Lsys, all local sites are
entangled and coherence extends over the whole space. Fortu-
nately, in realistic photosynthetic systems, various dissipative
mechanisms and decay channels act together to truncate the
spatial-temporal range of quantum coherence and to introduce
a local nature to exciton states. As a result, we can map the
structure of exciton systems to networks and thus develop an
intuitive understanding of the spatial arrangements and their role
in the optimization of exciton transfer efficiency.34

A. Classical Kinetic Rate. To demonstrate this approach,
we examine exciton transfer in linear chains. Our first example
is the simple two-site system described in Figure 3. The
stationary condition on the off-diagonal density matrix element
F12 leads to F12 ≈ iJ(F1 - F2)/(Γ + i∆). Inserting this expression
into the equation of motion for the two diagonal matrix elements,
we arrive at Ḟ1 ) -k1(F1 - F2) and Ḟ2 ) k1(F1 - F2) - ktF2,
where k1 ) 2ΓJ2/(Γ2 + ∆2) is the effective rate constant between
the two states. As a result, the two quantum levels reduce to
the two kinetic states in Figure 3 and we can easily arrive
at the average trapping time

which recovers the result in eq 4. The same approach can be
extended to three-state systems, four-state systems, or N-state
systems.

For a general N-state system in the linear chain configuration,
the off-diagonal matrix element follows

with ∆n, n+1 ) εn - εn+1 and Γ̃n,n+1 ) Γn,n+1 + i∆n,n+1. On the
right-hand-side of the equation, the first term represents the
coupling between adjacent sites, and the second term represents
the coupling beyond next adjacent sites. In a dissipative system,
the effective coupling strength between sites decreases with
separation; thus we can ignore nonadjacent site coupling in the
leading order treatment and obtain under the stationary condition

〈t〉 )
3
kt

+ 2
k2

+ 1
k1

)
3
kt

+ 1

|J23|2[Γ23 - 1
Γ31

(|J23|2 - |J12|2) + ∆2

Det
Γ12]+

1

2|J12|2[Γ12 + 1
Γ31

(|J23|2 - |J12|2) + ∆2

Det
Γ23]

(6)

〈t〉 ) 3
kt

+ 1

2J2[(kt + 3Γ*) +

∆2
kt/2 + 3Γ*

(kt/2 + Γ*)Γ* + J2(kt + 4Γ*)/(kt + 2Γ*)] (7)

〈t〉 ≈ N
kt

+ 1
2 ∑

n)1

N-1 [Γn,n+1 +
∆n,n+1

2

Γn,n+1
]|Jn,n+1|

2 (8)

〈t〉 ) N
kt

+ N - 1

2J2 [NΓ*

2
+

kt

2
+ ∆2

Γ* + kt/2] (9)

〈t〉 ) 2
kt

+ 1
k1

(10)

Ḟn,n+1 ) i(FnJn,n-1 - Jn,n+1Fn+1) + i(Fn,n+2Jn+2,n+1 -

Jn,n-1Fn-1,n+1) - Γ̃n,n+1Fn,n+1 (11)
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Inserting the stationary solution for the off-diagonal matrix
element into the equation of motion for the diagonal matrix
element, i.e.,

we arrive at the rate equation, Ḟn ) -kn,n+1(Fn - Fn+1) +
kn-1,n(Fn-1 - Fn) - δn,NktFn, with effective rate constant

With this mapping, we can evaluate the average trapping time
for the N-state linear chain and predict

which is a simple case of the chain reaction discussed recently
(Appendix D of ref 46). Evidently, eqs 4 and 10 are a special
case of the general expression with N ) 2.

B. Quantum Corrections: Nonlocal Kinetics. To the lead-
ing order, the off-diagonal matrix element between two adjacent
states simply provides an effective coupling and defines the rate
constant for the population relaxation between the two states.
In this sense, the leading order mapping constructs a kinetic
network with effective local links and does not incorporate any
nontrivial quantum coherent effects. To go beyond the leading
order construction, we will have to include the nonadjacent terms
in eq 11, which follow another equation of motion that couples
to states further apart. A procedure can be established by

systematically truncating the range of coupling in the equation
for the off-diagonal matrix element. Let us take the example of
the N-state chain system discussed earlier. Due to limited space,
we will not include a detailed derivation but present the final
result of the effective rate equation

where k+ and k- are the feed-forward and feed-backward rate
constants. With the leading order correction, the rate constants
are given by

Comparison of eqs 14 and 17 suggests the small parameter in
the approximate mapping as

which is satisfied under the condition of large dephasing rate
rate Γ > J or large detuning ∆ > J. In the example calculation,

Figure 5. Average trapping time as a function of trapping rate kt and dephasing rate Γ* for the linear three-level system (a) with |J| ) J ) 1 and
∆ ) 0.1 (the left contour plot) and (b) with |J| ) J ) 1 and ∆ ) 3 (the right contour plot). The solid circle represents the global minimal.

Fn,n+1 ≈ i
Jn,n+1

Γ̃n,n+1

(Fn - Fn+1) (12)

Ḟn ) (iFn,n-1Jn-1,n - iJn,n-1Fn-1,n) +
(iFn,n+1Jn+1,n - iJn,n+1Fn+1,n) (13)

kn,n+1 )
2Γn,n+1

Γn,n+1
2 + ∆n,n+1

2
|Jn,n+1|

2 (14)

〈t〉 ) N
kt

+ · · · + 2
k2

+ 1
k1

(15)

Ḟn)
kn-2,n-1
+ (Fn-2 - Fn-1) + (kn-1,n - k'n-1,n)

(Fn-1 - Fn) + kn,n+1
- (Fn - Fn+1) -

kn-1,n
+ (Fn-1 - Fn) - (kn,n+1 - k'n,n+1) ×
(Fn - Fn-1) - kn+1,n+2

- (Fn+1 - Fn+2)
(16)

k'n,n+1 ) 2Re
|Jn,n+1|2

Γ̃n,n+1
2 ( |Jn-1,n|2

Γ̃n-1,n+1

+
|Jn+1,n+2|2

Γ̃n,n+2
)

kn-1,n
+ ) 2Re

|Jn-1,n|2|Jn,n+1|2

Γ̃n-1,nΓ̃n,n+1Γ̃n-1,n+1

kn+1,n+2
- ) 2Re

|Jn,n+1|2|Jn+1,n+2|2

Γ̃n,n+1Γ̃n+1,n+2Γ̃n,n+2

(17)

|J2|2

|Γ̃|2
) |J|2

Γ2 + ∆2
, 1 (18)
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we verify eq 18 by comparing the exact expression for the three-
state system in eq 6 and the leading order expression in
eq 14.

C. Example Calculations. To illustrate the mapping to
classical kinetics, we study the three-site system described in
section IIIB and in Figure 3. The rate constants defined in eq
13 become

where k′ is the leading order correction for the local links and
k+ and k- are the leading order corrections for the nonlocal
links. The resulting rate matrix is K ) K0 + K′, with K0 the
classical rate and K′ the leading order correction. The inverse
matrix is expanded to leading order, giving K-1 ≈ K0

-1 -
K0

-1K′K0
-1. Then, we obtain the average trapping time

where the second term is the effective 1/t2 and the third term is
the effective 1/t1. For the special case of the symmetric three-
site system analyzed in section IIIB, our results agree with the
exact expression in eq 6 to leading order of J/Γ, thus confirming
the accuracy of the mapping procedure.

D. General Procedure. In general, under the steady-state
condition or in the case of fast dephasing, we can set the
off-diagonal elements of the density matrix to the steady state
and obtain a stationary condition that relates off-diagonal
elements FOD to diagonal matrix elements FD. Then, the
propagation of the diagonal matrix elements reduces to the
rate equation

where FOD is expressed linearly in terms of FD as FOD ) MFD,
and the rate matrix is defined as K ) -LD - LODM. Unlike
a typical rate equation, eq 21 describes a complex rate process
with feed-back and feed-forward, where the rate constant
between a pair of states depends not only on their populations
but also on the populations of a distant pair of states. This
nonlocality reflects the delocalized nature of exciton states
and is truncated due to the finite correlation length of quantum
coherence. As an example, consider linear chains, i.e.,
conjugate polymers. Figure 6 systematically shows local
coupling, nearest neighbor coupling, and next nearest neigh-
bor coupling, etc. For a given set of parameters, the mapping
to classical kinetics achieves convergence with increasing
degree of nonlocality in kinetic coupling, which defines a
measure of the spatial extent of exciton states in dissipative
environments.

For the linear chain configuration, the rate expression in eq
17 depends on the absolute value of the coupling matrix element

and is independent of the quantum phase. Coherent phase
modulation does not exist in linear one-dimensional chain
configurations but can play a significant role in nonlinear spatial
arrangements with closed loops. In the presence of closed loops,
different pathways along loops carry different phases and
therefore lead to quantum phase interference. In the next section,
we present explicit calculations of three-site and four-site
systems arranged in the closed loop configuration.

V. Nonlinear Configuration: Pathway Interference

The discussion in the previous section is limited to linear
molecular arrangements, which approximately represent
molecular wires and other quasi one-dimensional systems.
However, physical systems are rarely one-dimensional and
are often topologically configured with multiple transfer
pathways.23,48 Even one-dimensional chains can form non-
linear topologies due to through-space couplings or interchain
hoppings49,50 Therefore, a particularly interesting mechanism
is the interference between different transfer pathways, which
is a quintessential quantum coherent effect. The simple three-
site system in Figure 7 has two coupled exciton states and
one trapping state and, therefore, exhibits modulation effects
on the transfer rate as a dependence on the relative phase
between the coupling matrix elements. Similar effects can
be demonstrated in a three- or four-state model with bridge
states18 and in more realistic models.51,52

k'12 ) 2Re
|J12|2|J23|2

Γ̃12
2 Γ̃13

k'23 ) 2Re
|J12|2|J23|2

Γ̃23
2 Γ̃13

k12
+ ) k23

- ) 2Re
|J12|2|J23|2

Γ̃12Γ̃23Γ̃13

(19)

〈t〉 ≈ 3
kt

+ 2
k23

(1 -
k12
+

k12
-

k'23

k23
) + 1

k12
(1 -

k23
-

k23
-

k'12

k12
)

(20)

ḞD ) LDFD + LODFOD ) -KFD (21)

Figure 6. Mapping of an N-site exciton system in the linear
configuration to a kinetic system of linear chain, with systematic
incorporation of nonlocal kinetic couplings.

Figure 7. (a) Mapping of a three-site system in the closed loop
configuration to three-state kinetics with quantum corrections repre-
sented by nonlocal links. (b) A three-site system in an open configu-
ration. (c) A four-site system in a closed loop configuration.
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A. Three-Site System in the Closed Loop Configuration.
For simplicity, we study the quantum phase modulation in a
symmetric three-site system depicted in Figure 7. The exciton
system contains a superexchange coupling through the bridge
state and a direct coupling through space. The two coupling
pathways may carry different phases, which modulate the
average trapping time. The parameters for the model are taken
as J23 ) J31 ) J, ∆12 ) 0, ∆23 ) -∆31 ) ∆, Γ12* ) Γ23* ) Γ31*
) Γ*, and J12 ) eiθ|J12|, where θ is the relative phase between
the coupling matrix elements. The initial population is equally
distributed between state 1 and 2, i.e., F1(0) ) F2(0) ) 1/2. For
the special case of real J12, we solve the Bloch equation and
obtain the average trapping time

where Γ ) Γ* + kt/2. The numerator in eq 22, ∆ + J12,
depends on the relative sign of the coupling matrix J12 and
the detuning ∆, resulting in phase-sensitive interference. This
phase effect introduces a difference in the average time due
to the sign flip, |〈t〉+ - 〈t〉-| ) 2(|∆J12|)/(J2Γ), which increases
with detuning and decreases with dephasing rate. Equation

22 differs from the result for the two-site system in eq 4
because of a different coefficient for the average trapping
rate kt and a different numerator ∆ + J12. To understand eq
22, we diagonalize the system Hamiltonian and obtain the
eigenstates, i.e, excitons. One eigenstate has eigen energy
of ∆ + J12 and forms an effective two-state with the trap.
The effective two-site system is responsible for the first and
third terms in eq 22 and explains the interference effect due
to the sign flip of J12. Interestingly, the other eigenstate is
orthogonal to the trap state, and relaxes only via pure
dephasing, thus giving rise to 1/Γ* in eq 22.

It is, however, misleading to use eq 22 to predict the optimal
trapping time, because the expression is derived for real values
of the coupling constant. To explore the complete parameter
space including phase of J12, we numerically solve the Bloch
equation and plot 〈t〉 as a function of θ and ∆ in Figure 8. The
magnitude of exciton coupling J is taken as the basic energy
unit, and other parameters are scaled as Γ* ) J, |J12| ) J, and
kt ) J. Interesting, for small values of ∆, the minimal trapping
time is located at θ )( π/2 (the imaginary axis of J12), whereas,
for large values of ∆, the minimal trapping time is located at θ
) 0 or θ ) π (the real axis of J12). For large positive detuning
(∆ > Γ), the minimal trapping time is at θ ) 0, and the maximal
trapping time is at θ ) (π; for large negative detuning (∆ <

Figure 8. Average trapping time as a function of phase θ and ∆ for the closed-loop three-state model with |J| ) J ) 1, Γ* ) J, and kt ) J (the
left contour plot) and the average trapping time as a function of phase θ for the same model with ∆ ) 0 (the right plot).

Figure 9. Average trapping time as a function of phase θ and Γ* for the closed-loop three-state model with |J| ) J ) 1, ∆ ) 0, and kt ) J (the
left contour plot) and the average trapping time as a function of dephasing rate Γ* for the same model with θ ) 0 (solid curve) and θ ) π/2 (dash
curve), respectively (the right plot).

〈t〉 ) 3
kt

+ 1

Γ*
+ 1

2J2

Γ2 + (∆ + J12)
2

Γ
(22)
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-Γ), the maximal trapping time is at θ ) 0 and the minimal
trapping time is at θ ) (π. Thus, for real values of J12, the
dependence of the trapping time as a function of ∆ is consistent
with the prediction in eq 22. Numerical search of parameter
space identifies the minimal trapping time at Γ* ) 0, kt ) 2(3J2

+ ∆2)1/2, and θ ) (π/2. The optimal value of kt takes the same
functional form as those derived for two-site, three-site, and
linear chain systems in section III. As expected, the amplitude
of phase modulation can be suppressed by dephasing. The
dependence on the pure dephasing rate in Figure 9 confirms
this prediction. Further, the average time has an optimal value
as a function of Γ* for θ ) π/2 but has a linear-dependence on
Γ* for θ ) 0, and the two curves converge at large dephasing
rate.

B. Kinetic Mapping and General Interpretations. To
interpret the finding of the global minimal at θ )(π/2 predicted
above, we apply the mapping procedure developed in section
IV to the three-site system. Iterating eq 11 to leading order
correction, we obtain the effective rate equation

As shown in Figure 7, we denote the clockwise nonlocal
coupling (forward) with a positive sign, k+, and counterclock-
wise nonlocal coupling (backward) with a negative sign, k-.
The classical rate constant k is defined by eq 14, and the high-
order rate constants associated with nonlocal coupling are given
by

and similarly for other k- and k+. For relatively small detuning
(∆ < Γ*), the nonlocal rate constant for the three-site system is
proportional to Im[J13J32J21], the imaginary part of the product
of the coupling matrix elements along the closed loop. Thus,
phase modulation is characterized by the cumulative phase along
the loop, θc ) θ13 + θ32 + θ21, and the optimal trapping time
occurs at θc ) (π/2. For relatively large detuning, (∆ > Γ*),
the magnitudes of the rate constants in eq 24 take the maximal
value when J12 takes a real value, i.e., θc ) 0 and θc ) π. The
leading order quantum correction correctly captures the main
feature of the phase modulation in the three-site system. In
addition, numerical solutions to eq 23 compare favorably with
the exact result and become more accurate as the dephasing
rate or the detuning increases.

We now generalize eq 24 to predict the phase modulation in
a N-state loop and predict phase coherence in realistic exciton
systems.

• Evidently, open topological structures without closed loops
such as the dendrimers in Figure 13 will not display any

phase modulation. Closed topological structures such as the
light harvesting systems II in Figure 13 will exhibit phase
modulation, similarly to the interference effect in the double
slit experiment.

• To leading order, phase modulation is governed by the
cumulative phase along a closed loop, θc ) θ12 + θ23 + ...
+ θN,1. When the states along the loops are close to resonant
or have a small offset Γ* > ∆, the extreme occurs on the
real axis for an even number of links along the loop, θc )
0, ( π, and occurs on the imaginary axis for an odd number
of links, θc ) (π/2.

• The situation is more complicated as the detuning increases.
For large detuning Γ* < ∆, the phase-dependence is
governed by the effective cumulative phase θc ) θ12 +
θ23 + ... + θN,1 + θ∆, with θ∆ as the additional contribution
associated with the detuning along the loop.

• The phase-dependence becomes weaker as the dephasing
rate or the trapping rate increases

C. Three-Site System in the Open Configuration. To
illustrate the above predictions, we consider two additional
examples. The first example is the open three-site system in
Figure 7, where the link between states 1 and 2 is removed.
For the symmetric three-site system, we define ε1 ) ε3 ) ∆
and introduce a similar set of parameters as in eq 22 but with
J31 ) 0. Then, the expression for the average trapping time can
be obtained similarly as in eq 6, giving

where ∆12 ) -∆23 ) ∆, ∆31 ) 0, Γ31 ) Γ31* , Γ12 ) Γ12* + kt/2,
Γ23 ) Γ23* + kt/2, and Det ) Γ12Γ23 + (|J23|2Γ23 + |J12|2Γ12)/Γ31.
Under the special condition of identical coupling constants J )
|J12| ) |J23| and identical dephasing rates Γ* ) Γ12* ) Γ23* )
Γ31* , eq 25 reduces to

with Γ ) Γ* + kt/2. In comparison with eq 22, eqs 25 and 26
depend only on the absolute value of the coupling constant |J| and
are therefore independent of the phase θ. The open configuration
of the three-site system in Figure 7 is simply a variation of the
linear chain configuration in Figure 3, and does not form a loop.

Interestingly, in this configuration, the optimal condition for eq
26 is a pair of nonvanishing rates, Γ* and kt, which differ from
the optimal condition for eq 7. In Figure 10, the average trapping
time 〈t〉 is plotted as a function of Γ* and kt for the open-loop
model with ∆ ) J ) 1.0. From the contour, we can identify the
optimal condition as Γ* ) 1.4840 and kt ) 3.6349, which defines
the minimal value of 〈t〉 ) 3.3014. The vanishing optimal value
of pure dephasing rate Γ* ) 0 in the linear chain configuration is
an exception, and the general optimal condition for a complex
network is defined by nonzero values of Γ* and kt.

D. Four-Site System in the Closed Loop Configuration.
Our second example is the four-site system in Figure 7. Similar to
the three-site system in the closed-loop configuration, the two

Ḟ1 ) -(k12 + k12
- )(F1 - F2) + (k31 - k31

+ ) ×

(F3 - F1) + (k23
+ + k23

- )(F2 - F3)
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- )(F3 - F1)

Ḟ3 ) -(k31 + k31
- )(F3 - F1) + (k23 - k23

+ ) ×
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(23)
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J13J32J21

Γ̃23Γ̃21
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energy transfer pathways from the initial state 1 to the trap state 3
may carry different phases that lead to phase modulation as a result
of quantum interference. The parameters for the four-site system
are scaled with the absolute value of J ) |J|, giving ε2′ ) ε2 ) ∆,
ε1 ) ε4 ) 0, Γ* ) J, kt ) J, J12′ ) J2′3 ) J23 ) J, and J12 ) Jeiθ.
The average trapping time is plotted in Figure 11 as a function of
detuning ∆ and relative phase θ and then plot as a function of θ
for a given value of ∆ ) 0. As expected, the average trapping
time 〈t〉 is modulated by θ, and the extreme value occurs on the
real axis of the coupling constant, θ ) 0, (π. The difference
between the four-site system and the three-site system (i.e., Figure
11 versus Figure 8) can be explained using kinetic mapping.
Similarly to Figure 9, we calculate the dependence on the pure
dephasing rate in Figure 12 and confirm the amplitude of phase
modulation decreases as the dephasing rate Γ* increases. Further,
the average time has an optimal value as a function of Γ* for θ )
π but has a linear dependence on Γ* for θ ) 0, and the two curves
converge at large dephasing rate.

Spatial arrangements of molecular structures are ubiquitous
in tabular systems, molecular wires, dendrimers, and poly-
meric liquid crystals. The spatial arrangements in these
molecular structures exhibit subtle quantum effects if the
quantum excitation is spatially extended or delocalized. For
example, the open tree structure in dendrimers in Figure 13
will not display any phase modulation,53 whereas the closed

topological structure of the light harvesting systems II (LH2)
in Figure 13 will exhibit phase modulation along every closed
loop.54 Multiple transfer pathways and their interference have
been investigated in the context of long-range electron
transfer in proteins18,51,52,55 but can be better demonstrated
in exciton systems35 because energy excitation does not
polarize the medium as strongly as charge excitation and
hence is typically less localized than charge transfer sys-
tems.

VI. Concluding Remarks

The theoretical analysis presented in this paper consists of
two related problems: optimization of exciton trapping efficiency
and mapping of quantum energy transfer processes to network
kinetics with nonlocal connectivity. Using these approaches, we
can solve the minimal models to capture the underlying physics
of efficient energy transfer and analyze these models thoroughly
to quantify and classify the generic mechanisms.

For photosynthetic systems, the energy transfer efficiency
approaches unity and is thus determined largely by the average
trapping time, which reduces the problem to mean first passage
time calculations and thus simplifies the analysis considerably.
Analytical solutions for multisite systems show that environments
can be optimized to yield minimal trapping time or maximal energy
transfer efficiency, and the optimal conditions for the environments
can be explained using the simple physical arguments:

1. The competition between coherent exciton dynamics and
localized hopping or trapping yields the optimal value of
trapping rate kt for efficient energy transfer. The optimal value
of kt is a complex function of the exciton coupling J, detuning
∆, and dephasing rate Γ*, and is generally nonzero.

2. Line-broadening increases the frequency overlap and
therefore decreases the effective detuning, thus defining
an optimal pure dephasing rate Γ* for maximal efficiency.
This effect does not play a role in a homogeneous linear
chain with an identical site energy and with an end trap
in Figure 3a, where pure dephasing does not assist
quantum transfer. For an inhomogenous linear chain with
an end trap as in Figure 3b, the optimal pure dephasing
rate becomes nonzero in some regimes of the trapping rate
but remains zero in the other regimes. Thus, dephasing
assisted energy transfer is a complicated mechanism,
which may or may not play a dominant role depending
on the combined effect of the exciton coupling, detuning,
and trapping.

Figure 11. Average trapping time as a function of phase θ and ∆ for the closed-loop four-state model with |J| ) J ) 1, Γ* ) J, and kt ) J (the
left contour plot) and the average trapping time as a function of phase θ for the same model with ∆ ) 0 (the right plot).

Figure 10. Contour plot of the average trapping time as a function of
the trapping rate kt and dephasing rate Γ* for the open three-state model
with |J| ) 1.0 and ∆ ) 1.0. The minimal trapping time is 〈t〉 ) 3.3014
with the optimal condition of Γ* ) 1.484 and kt ) 3.6349.
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3. Dephasing between two or more parallel pathways helps
suppress destructive interference effects in nonlinear network
configurations (i.e., energy transfer networks). Specifically,
for an open loop configuration as in Figure 7b, the average
trapping time is optimized at a nonzero pure dephasing rate
but is phase-insensitive, whereas for a closed loop configu-
ration in Figure 7a and in Figure 7c, the average trapping
time is phase-sensitive. In contrast to linear configurations,
the optimal dephasing rate for efficient trapping is typically
nonzero in nonlinear network configurations.

4. Phase modulation of the trapping time arises from the
interference between different energy transfer pathways
and exists in energy transfer networks that form at least
one closed loop. The cumulative phase along the loop
determines the maximal and minimal trapping times,
which occur when the product of the coupling matrix
elements along the loop is an imaginary variable for an
odd number of links as in Figure 7a and when the product
is a real variable for an even number of links as in Figure

7c. To our knowledge, phase-sensitive modulation is a new
observation that has not been analyzed before.

Though realistic exciton systems are more complicated,
simple few-level systems discussed in this paper capture the
essence of the optimal conditions. In fact, with simple variations
of the three-state system in Figure 14, we are able to understand
and classify all the optimal conditions discussed above: (1) The
homogeneous linear chain in Figure 14a explains the optimal
trapping time. (2) The biased linear chain in Figure 14b explains
the optimal condition with nonzero optimal dephasing rate at
large detuning. (3) The nonlinear two-branch system in Figure
14c explains the global optimal condition with combined
trapping and dephasing time. (4) The nonlinear closed-loop
system in Figure 14d explains the phase-modulation effects.

An energy transfer system can be mapped to a kinetic network
with effective hopping rates as the leading order picture, which
is then corrected by incorporating nonlocal links resulting from
quantum mechanical corrections. The rate constants for the
nonlocal links are phase insensitive when calculated along a

Figure 12. Average trapping time as a function of phase θ and Γ* for the closed-loop four-state model with |J| ) J ) 1, ∆ ) 0, and kt ) J (the
left contour plot) and the average trapping time as a function of phase Γ* for the same model with θ ) π/2 (solid curve) and θ ) π (dash curve),
respectively (the right plot).

Figure 13. Examples of open and closed structures: (a) compact phenylacetylene dendrimers (reprinted with permission from Chemical Physics,
copyright 2002 Elsevier: Chem. Phys. 2002, 275, 333.) and (b) LH2 Octameric complex from Rs. Molishciananum. This image is made with VMD
(J. Mol. Graphics 1996, 14, 33-38) using a file owned by the Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular
Modeling and Bio-informatic, at the Beckman Institute, University of Illinois at Urbana-Champaign (Structure 1996, 4, 581).
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chain segment and are phase sensitive when calculated along a
closed loop. Thus, the mapping procedure systematically
incorporates the classical hopping kinetics, phase-independent
nonlocal quantum corrections, and phase-dependent nonlocal
interference effects. As a result, this approach defines a rigorous
and natural separation of classical hopping and quantum
coherence, and introduces an intuitive tool to analyze topological
connectivity and pathway interference in quantum networks.

Using the kinetic mapping procedure, we can estimate the
quantum mechanical effects and show that the homogeneous
linear chain configuration (see Figure 3) is mostly classical
whereas the loop configuration requires significant quantum
corrections. The two optimal conditions (1) and (2) discussed
above for linear chains can be qualitatively predicted by classical
kinetics, whereas the optimal conditions (3) and (4) for networks
are due to nonlocal interference effects that cannot be predicted
by classical hopping kinetics. When quantum mechanics is the
dominant effect, the exciton basis representation of the same
dynamic equation is more adequate than the local basis set used
in classical hopping kinetics. In fact, the optimal conditions (3)
and (4), specifically the topological dependence and phase
modulation described in section V, can be better understood
and estimated within the exciton basis representation and are
therefore quantum mechanical in nature.

In summary, the results reported in this paper are derived
for multisite systems in the local basis representation but can
be instructive for mechanistic studies of natural photosynthetic
systems and for the optimal design of artificial systems. The
simple analytical solutions for the minimal models capture the
essential physics involved in numerical simulations published
earlier, predict a new observation of phase-sensitive interference
in closed-loop configurations, and quantitatively classify dif-
ferent roles of environments in energy transfer processes.
Furthermore, the kinetic mapping approach applies to quantum
transport in general, especially for charge transfer processes such
as electron transfer in biological systems, electric current in
molecular electronics, and carrier mobility in molecular crystals
or conjugate polymers.15,55,56

Acknowledgment. The work described here is supported by
the National Science Foundation (0806266 and 0556268) and
MIT energy initiative seed grant (MITEI). We thank Mr. Fan
Liu and Dr. Jianlan Wu for preparing some of the figures. We
also thank the reviewers for bringing us to the attention of
several recent references, which are discussed in the introduc-

tion. The calculations reported in this paper were completed in
the summer of 2008 and a draft was circulated thereafter.

References and Notes

(1) Sauer, K. Photosynthesis--the light reactions. Annu. ReV. Phys.
Chem. 1979, 30, 155.

(2) Blankenship, R. E. Molecular Mechanisms of photosynthesis;
Blackwell Science: Oxford/Malden, 2002.

(3) van Grondelle, R.; Novoderezhkin., V. I. Energy transfer in
photosynthetic experimental insights and quantitative models. Phys. Chem.
Chem. Phys. 2006, 8, 793.

(4) Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.; Mancal, T.;
Cheng, Y. C.; Blankenship, R. E.; Fleming, G. R. Evidence for wavelike
energy transfer through quantum coherence in photosynthetic systems.
Nature 2007, 446, 782 Letters.

(5) Lee, H.; Cheng, Y. C.; Fleming, G. R. Coherence dynamics in
photosynthesis: Protein protection of excitonic coherence. Science 2007,
316, 1462.

(6) Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic
solar energy transduction. Acc. Chem. Res. , 26, 198–205.

(7) Leegwater, J. A.; Durrant, J. R.; King, D. R. Exciton equilibrium
induced by phonons: Theory and application to ps ii reaction centers.
J. Chem. Phys. 1997, 101, 7205.

(8) Vulto, S. I. E.; de Baat, M. A.; Louwe, R. J. W.; Permentier, P.;
Neef, T.; Miller, M.; van Amerongen, H.; Aartsma., T. J. Exciton simulations
of optical spectra of the fmo complex from the green sulfur bacterium
chlorobium tepidum at 6k. J. Phys. Chem. B 1998, 102, 9577.

(9) Tretiak, S.; Middleton, C.; Chernyak, V.; Mukamel, S. Bacterio-
chlorophyll and carotenoid excitonic coupings in the lh2 system of purple
bacteria. J. Phys. Chem. B 2000, 104, 9540.

(10) Abramavicius, D.; Palmieri, B.; Voronine, D. V.; Sanda, F.;
Mukamel, S. Coherent multidimensional optimal spectroscopy. Chem. ReV.
2009, 109, 2350.

(11) Sener, M. K.; Lu, D.; Ritz, T.; Park, S.; Fromme, P.; Schulten, K.
Robustness and optimality of light harvesting in cyanobacterial photosystem
i. J. Phys. Chem. B 2002, 106, 7948.

(12) Sener, M. K.; Park, S.; Lu, D.; Damjanovic, A.; Ritz, T.; Fromme,
P.; Schulten, K. Excitation migration in trimeric cyanobacterial photosystem
i. J. Chem. Phys. 2004, 120, 11183.

(13) Cho, M.; Vaswani, H. M.; Brixner, T.; Stenger, J.; Fleming, G. R.
Exciton analysis in 2d electronic spectroscopy. J. Phys. Chem. 2005, 109,
10542.

(14) Adolphs, J.; Renger, T. How proteins trigger excitation energy transfer in
the fmo complex of green sulfur bacteria. Biophys. J. 2006, 91, 2778.

(15) Silbey, R. J. Electronic energy transfer in molecular crystals. Annu.
ReV. Phys. Chem. 1976, 27, 203.

(16) Cheng, Y. C.; Silbey, R. J. Coherence in the b800 ring of purple
bacteria lh2. Phys. ReV. Lett. 2006, 96, 028103.

(17) Jang, S.; Newton, M. D.; Silbey, R. J. Multichromophoric forster
resonance energy transfer from b800 to b850 in the light harvesting complex
2: Evidence for subtle energetic optimization by purple bacteria. J. Phys.
Chem. B 2007, 111, 6807.

(18) Jang, S.; Cao, J. Non-adiabatic instanton calculation of multi-state
electron transfer reaction rate: interference effects in three and four state
systems. J. Chem. Phys. 2001, 114, 9959.

(19) Denschlag, J.; Simsarian, J. E.; Feder, D. L.; Clark, C. W.; Collins, L. A.;
Cubizolles, J.; Deng, L.; Hagley, E. W.; Helmerson, K.; Reinhard, W. P.; Rolston,
S. L.; Schneider, B. I.; Phillips, W. D. Generating solitons by phase engineering of
a bose-einstein condensates. Science 2000, 287, 97.

(20) Kral, P.; Shapiro, M. Cyclic population transfer in quantum systems
with broken symmetry. Phys. ReV. Lett. 2001, 87, 183002.

(21) Li, X.; Wu, Y.; Steel, D.; Gammon, D.; Stivater, T. H.; Katzer,
D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate
in a semiconductor quantum dot. Science 2003, 301, 809.

(22) Franco, I.; Shapiro, M.; Brumer, P. Robust ultra-fast currents in
molecular wires through start shifts. Phys. ReV. Lett. 2007, 99, 126802.

(23) Didraga, C.; Knoester, J. Excitons in tabular molecular aggregates.
J. Lumin. 2004, 110, 239.

(24) Heijs, D.; Malyshev, V. A.; Knoester, J. Trapping time statistics
and efficiency of transport of optical excitations in dendrimers. J. Chem.
Phys. 2004, 121, 4884.

(25) Reineker, P.; Engelmann, A.; Yudson, V. I. Excitons in dendrimers:
optical absorption and energy transport. J. Lumin. 2001, 94-95, 203.

(26) Reineker, P.; Engelmann, A.; Yudson, V. I. Optical absorption and
energy transfer processes in dendrimers. J. Lumin. 2004, 108, 333.

(27) Hemenger, R. P.; Pearlstein, R. M. Impurity quenching of molecular
excitons ii. frenkel excitons in linear chains. Chem. Phys. 1973, 2, 424.

(28) Vlaming, S. M.; Malyshev, V. A.; Knoester, J. Nonmonotonic
energy harvesting efficiency in biased exciton chains. J. Chem. Phys. 2007,
127, 154719-1.

Figure 14. Variations of three-level system employed to classify the
optimal conditions in more complex and realistic exciton systems: (a)
homogeneous linear chain; (b) biased linear chain; (c) nonlinear two-
branch system; (d) nonlinear closed-loop system.

Feature Article J. Phys. Chem. A, Vol. 113, No. 50, 2009 13837



(29) Gaab, K.; Bardeen, C. The effects of connectivity, coherence, and trapping
on energy transfer in simple light-harvesting systems studied using the haken-strobl
model with diagonal disorder. J. Chem. Phys. 2004, 121, 7813.

(30) Plenio, M. B.; Huelga, S. F. Dephasing-assisted transport: quantum
networks and biomolecules. New J. Phys. 2008, 10, 113019.

(31) Caruso, F.; Chin, A. W.; Datta, A.; Huelga, S. F.; Plenio, M. B.
Fundamental mechanisms of noise supported energy transfer in biological
systems. Quant. Phys. 2009. arXiv:0901.445v1.

(32) Mohseni, M.; Rebentrost, P.; Lloyd, S.; Aspuru-Guzik, A. Environ-
ment-assisted quantum walks in energy transfer of photosynthetic complexes.
J. Chem. Phys. 2008, 129, 174106.

(33) Rebentrost, R.; Mohseni, M.; Kassal, I.; Lloyd, S.; Aspuru-Guzik,
A. Environment-assisted quantum transport. New J. Phys. 2009, 11, 033003.

(34) Liu, F. Cao, and J. Silbey. R. J. Manuscript in preparation.
(35) Olaya-castro, A.; Lee, C. F.; Olsen, F. F.; Johnson, N. F. Efficiency

of energy transfer in a light-harvesting system under quantum coherence.
Phys. ReV., B 2008, 78, 065115.

(36) Tannor, D. J.; Rice, S. A. Coherent pulse sequence control of product
formation in chemical reactions. AdV. Chem. Phys. 1988, 70, 441–524.

(37) Brumer, P.; Shapiro, M. Coherence chemistry: controlling chemical
reactions. Acc. Chem. Res. 1989, 22, 407.

(38) Peirce, A.; Dahleh, M.; Rabitz, H. Optimal control of quantum
mechanical systems: Existence, numerical approximations, and application.
Phys. ReV. A 1988, 37, 4950.

(39) Zhao, M.; Rice, S. Optical control of molecular dynamics; Wiley
Inter-science: New York, 2000.

(40) Shapiro, M.; Brumer, P. Principles of the Quantum Control of
Atomic and Molecular Processes; Wiley: New York, 2003.

(41) Cao, J.; Bardeen, C. J.; Wilson, K. R. Molecular p pulse for total
inversion of electronic state population. Phys. ReV. Lett. 1998, 80, 1406.

(42) Chakrabarti, R.; Rabitz, H. Quantum control landscapes. Int. ReV.
Phys. Chem. 2007, 26, 671–725.

(43) Silbey, R.; Harris, R. A. Variational calculation of the dynamics
of a two level system interacting with a bath. J. Chem. Phys. 1984, 80,
2615.

(44) Tanimura, Y. Stochastic liouville, langevin, fokker-planck and
master equation approaches to quantum dissipative systems. J. Phys. Soc.
Jpn. 2006, 75, 082001.

(45) Cao, J. A phase-space study of bloch-redfield theory. J. Chem. Phys.
1997, 107, 3204.

(46) Cao, J.; Silbey, R. J. Generic schemes for single molecule kinetics:
Self-consistent pathway solutions. J. Phys. Chem. 2008, 112, 12867.

(47) Hofmann, C.; Aartsma, T. J.; Michel, H.; Kohler, J. Direct
observation of tiers in the energy landscape of a chromoprotein: A single-
molecule study. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15534.

(48) Vlaming, S. M.; Heijs, D. J.; Knoester, J. Transport of optical excitations
on dendrimers in the continuum approximation. J. Lumin. 2005, 111, 349.

(49) Collini, E.; Scholes, G. D. Coherent inter-chain energy migration
in a conjugated polymer at room temperature. Science 2009, 323, 369.

(50) Scholes, G. D.; Ghiggino, K. P.; Oliver, A. M.; Paddon-Row, M. N.
Through-space and through-bond effects on exciton interactions in rigidly
linked dinaphthyl molecules. J. Am. Chem. Soc. 1993, 115, 4345.

(51) Skourtis, S. S.; Waldeck, D. H.; Beratan, D. N. Inelastic electron
tunneling erases coupling-pathway interferences. J. Chem. Phys. B 2004,
108, 15511.

(52) Prytkova, T. R.; Kurnikov, I. V.; Beratan, D. N. Coupling coherence
distinguishes structure sensitivity in protein electron transfer. Science 2007, 315,
622.

(53) Nantalaksakul, A.; Reddy, D. R.; Bardeen, C. J.; Thayumanavan,
S. Light harvesting dendrimers. Photosynthesis Res. 2006, 87, 133–150.

(54) McDermontt, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite,
A. M.; Papiz, M. Z.; Cogdell, R. J.; Issacs, N. W. Crystal structure of an
integral membrane light-harvesting complex from photosynthetic bacteria.
Nature 1995, 374, 517.

(55) Beratan, D. N.; Onuchic, N.; Winkler, J.; Gray, H. B. Electron-
tunneling pathways in proteins. Science 1992, 258, 1740.

(56) Mujica, V.; Kemp, M.; Ratner, M. A. Electron conduction in
molecular wires. J. Chem. Phys. 1994, 101, 6849.

JP9032589

13838 J. Phys. Chem. A, Vol. 113, No. 50, 2009 Cao and Silbey


